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Abstract
We developed a parallel strategy for learning optimally specific realizable rules
by perceptrons, in an online learning scenario. Our result is a generalization of
the Caticha–Kinouchi (CK) algorithm developed for learning a perceptron with
a synaptic vector drawn from a uniform distribution over the N-dimensional
sphere, so called the typical case. Our method outperforms the CK algorithm
in almost all possible situations, failing only in a denumerable set of cases.
The algorithm is optimal in the sense that it saturates Bayesian bounds when it
succeeds.

PACS numbers: 89.70.Eg, 84.35.+i,87.23.Kg

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One of today’s challenges in the area of Artificial Intelligences (AI) is the development
of autonomous intelligent agents. In general terms, an autonomous agent is a system
situated within an environment, which the agent senses and acts over [1]. These agents
need mechanisms for assimilating and processing environmental information acquired through
their sensors. Data acquisition and information processing are some of the most characteristic
features of neural networks.

During the past decade great effort has been applied in the research of the online learning
scenario in artificial systems. In the online scenario information, represented by strings of bits
drawn from a given distribution, is presented to the network for processing and then discarded
[2–5]. This scenario is particularly appealing for the development of autonomous agents that
have to interpret, adapt and react to ever-changing environmental conditions.

In the statistical mechanics approach to the learning from examples and generalization by
neural networks, the single-layered perceptron has been the preferred laboratory. Due to their
simplicity, perceptrons are excellent systems to test new ideas that could lead to applications
for more sophisticated and realistic systems. This has probably been the main motivation
for the research focused on a mismatched student–teacher scenario [6, 7], which signifies a
real challenge for the adaptability of the system modelled by the network. This scenario has
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been recently revisited and extended to the situation of a student learning from two teachers
[8, 9]. The common factor in all these studies is that the teacher is a typical perceptron, with
a synaptic vector drawn from a uniform distribution over the N-sphere of radius

√
N .

In a previous article [10], we studied the mismatched scenario where a student uses an
algorithm suited from learning optimally from a teacher different from the one the student is
currently learning from. We demonstrated that in such cases the student mostly fails to learn
even when the algorithm applied is suitable for learning from a teacher harder than the one
currently in use. We have also proven that if the rule to be learned is the simplest possible
(the one-bit diluted perceptron), the algorithm developed for learning optimally the typical
teacher [3] is outperformed by the simplest possible algorithm (the pure Hebb rule). These
results naturally triggered the question whether it is possible to tailor an algorithm specific for
learning a particular realizable rule.

We present in this paper an algorithm developed for learning from almost any perceptron
teacher, with performance not worse than the Caticha–Kinouchi (CK) algorithm [3]. In the
next section we present the background needed for the main development of the algorithm. In
section 3, we present the algorithm based on an estimate for the distribution of the teacher’s
post-synaptic field. In section 4, we present numerical estimates of the learning curve for
different cases, including the particular synaptic vectors where the algorithm fails. Finally, in
section 5, we present our conclusions and a brief description of our future work.

2. Background

In the supervised, online learning scenario, the student learns to classify input vectors like
a teacher. The input vectors are drawn according to a given distribution, presented to the
student one by one and then discarded. The measure of the student’s performance is given
by the estimate of the expected mismatch between teacher’s and student’s classifications. For
computing these estimates it is necessary to obtain the distribution of the relevant variables of
the problem.

By the development presented in the appendix we may suppose, without loss of generality,
that any teacher perceptron has a synaptic vector B with non-negative, decreasingly ordered
entries and norm B. Let J be the student’s synaptic vector learning from B. The norm of J is
denoted by J. Let

b = BTS
B

, h = JTS
J

be the teacher’s and student’s post synaptic fields. Observe that we have opted for the matrix
notation of the inner product (i.e. ∀ U, V ∈ R

N U·V = UTV, where T indicates the transpose).
The input S is binary, unless said otherwise. It can be demonstrated (see the appendix) that
the joint distribution of the post synaptic fields can be expressed as

P(b, h) � N (h|bR, 1 − R2)Pb(b), (1)

where N (x|μ, σ 2) is a normal distribution in x, centred at μ and variance σ 2. The marginal
distribution of the field b is

Pb(b) = lim
N→∞

∫ ∞

−∞

db̂

2π
e−ib̂b

N∏
k=1

cos(b̂βk) , (2)

where β = B/B is a unit vector with positive, decreasingly ordered entries. The product of
cosines can be rewritten as

�N(b̂) ≡
N∏

k=1

cos(b̂βk) = 1

2N

∑
{T∈{±1}N }

cos(βTT) (3)

2
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and thus

Pb(b) = lim
N→∞

1

2N

∑
{T∈{±1}N }

δ(b − βTT),

where δ(x) is Dirac’s delta function. Thus, the field b can only be equated to βTT = ∑N
k=1 βkTk

which is the length of a random path with decreasing step sizes βk . An interesting study on
random walks with decreasing steps can be found in [11]. It is important to note that if the
entries βk depend on the size of the path N such that ∀ k limN→∞ βk = 0, then

(i) Pb(b) = N (b|0, 1), and then the optimal learning algorithm is the one found by Caticha
and Kinouchi [3],

(ii) bmax ≡ limN→∞
∑N

k=1 βk = ∞.

If the entries of β are taken from a sequence {βk}∞k=1 in �2 (i.e. the space of sequences {ak}
such that

∑∞
k=1 a2

k < ∞), with not all of its elements equal to zero, then the following hold.

(i) The product �N(b̂) converges absolutely for all b̂.
(ii) The product �N(b̂) converges uniformly on compact sets.

(iii) The product �N(b̂) is uniformly continuous.
(iv) The product �N(b̂) has a Fourier transform in the distribution sense.

About point (iv) above, the Fourier transform of the product �(b̂) is the measure Pb(b) which
may be singular with respect to the Lebesgue measure (we will explore this case with a
particular example in section 4.5). If the measure is not singular then the following algorithm
can be applied to learn the teacher B.

3. The parallel algorithm

A Hebbian-like algorithm has the following form:

Jnew = Jold + F
σB√
N

S, (4)

where σB ≡ sgn(BTS) is the classification given by the teacher and F is the learning rate,
which can be a function of the variables available to the student, the pair (σB, S) and the state
of the student, represented by Jold. It has been demonstrated [3] that the learning rate that
produces the lowest expected error has the form

Fop =
√

Q

R
[〈|b|〉b|φ − Rφ], (5)

where Q ≡ J 2/N is the normalized size of the student’s synaptic vector, φ ≡ σBh is the
stability or surprise parameter, R ≡ BTJ/(BJ ) is the student–teacher overlap and

〈|b|〉b|φ ≡
∫

db|b|P(b|φ)

is the conditional expected value of the absolute value of the teacher’s synaptic field given the
knowledge available to the student conveyed by the variable φ. It is a simple exercise to show
that the conditional probability can be obtained from (1)

P(b|φ) = N (φ||b|R, 1 − R2)Pb(b)∫
dbN (φ||b|R, 1 − R2)Pb(b)

;

thus,

〈|b|〉b|φ =
∫∞

0 db bN (φ|bR, 1 − R2)Pb(b)∫∞
0 dbN (φ|bR, 1 − R2)Pb(b)

. (6)

3
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The optimal algorithm relies on the knowledge of the overlap R and the distribution
Pb. To obtain an appropriate estimate for the overlap R we rely on the measurement of the
time-averaged generalization error

eg ≡ 〈	(−φ)〉LM
, (7)

where 	(x) = 1 if x � 1 and 0 otherwise, and LM = {S1,S2, . . . ,SM} is a collection
of M sets of input samples Sm = {

S(m)
1 , S(m)

2 , . . . , S(m)
P

}
. Each one of these sets is used in

a particular realization of the learning process, and the average over realizations provide the
estimate for the generalization error. In terms of the joint probability (1) we have the ensemble
average of the generalization error, i.e.

eg(R) =
∫ ∞

−∞
db dhP(b, h)	(−bh)

= 2
∫ ∞

0
dbPb(b)H(bR/

√
1 − R2), (8)

where H(x) ≡ ∫∞
x

du exp(−u2/2)/
√

2π .
One way to estimate the LHS of (7) is by considering an ensemble of M students learning

in parallel, all following the update rule (4). Let us denote such an ensemble as
{
J(i)

p , F (i)
p

}
,

where J(i)
p and F (i)

p are the synaptic vector and the learning rate of the ith student after p
updates. The natural initial condition is by supposing the students start from the tabula rasa
state, i.e. J(i)

0 = 0 and learning rates set to pure Hebb algorithms F
(i)
0 = 1. The first element

of Si , i.e. S(i)
1 is classified according to σ

(i)
B,1 ≡ sgn

(
BTS(i)

1

)
. Given that all the students are

assigned a null synaptic vector, the initial estimate for the generalization error is set to ẽ0 = 1
2 ,

consistent with a R̃0 = 0. The first update for the ith student is

J(i)
1 = σ

(i)
B,1√
N

S(i)
1 . (9)

Next, the second inputs from the sets Si are classified by the teacher producing the pairs(
σ

(i)
B,2, S(i)

2

)
. With these inputs we can compute the stabilities

φ
(i)
1 ≡ σB,2

J(i)T
1 S(i)

2

J
(i)
1

, (10)

and the generalization error

ẽ1 ≡ 1

M

∑
i

	
(−φ

(i)
1

)
. (11)

Following the Ansatz (A.2) we set J(i) = J
(i)
B β + J

(i)
⊥ β

(i)
⊥ , where β

(i)
⊥ is a random unit vector

in the hyper-plane perpendicular to β. To estimate the teacher’s synaptic vector we use the
arithmetic average over the ensemble of students

β̃1 ≡
∑

i J(i)
1∣∣∑

i J(i)
1

∣∣ ; (12)

if M is sufficiently large, the perpendicular component of the students synaptic vectors cancel
each other. If M is large enough and there is no correlation between inputs from different
sets

(
i.e.

〈
S(i)T

p S(j)
p

〉 � Nδi,j

)
then we would expect β̂1 to be parallel to β with corrections of

O(1/
√

M).
The existence of the fast Fourier transform (FFT) algorithm [12] makes practical the

numerical estimation of the density Pb. This technique produces better results when applied

4
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to grids of a size equal to a power of two, 2G. The FFT of the function f (x̂), i.e. FFT[f (x̂)]2G ,
produces a 2G-dimensional vector F, with entries equal to the Fourier transform of f (x̂),
evaluated at the points xk = (k − 1)2−G xmax, for a suitable value of the cutoff xmax. Thus,

Fk =
∫ ∞

−∞

dx̂

2π
e−ix̂xk f (x̂) ∀ k = 1, 2, . . . , 2G.

In order to compute the estimate of Pb we need first to compute the cutoff bmax,1, the grid
vector b1 and finally the Fourier transform P̃1:

bmax,1 =
N∑

k=1

β̃1,k (13a)

b1 = bmax,1

2G
(0, 1, 2, . . . , 2G − 1)T (13b)

P̃1 = FFT

[
N∏

k=1

cos(b̂β̃1,k)

]
2G

. (13c)

With the estimate of the probability density stored in a vector, the expectation values take
the form of an inner product.

In order to estimate the overlap R̃1, we use the estimate of the error obtained by (11)
and expression (8). To estimate this last one we define the vectors H(b, R) and Γ(b, R) with
entries

Hi(b, R) ≡ H(bi R/
√

1 − R2) (14)

and


i(b, R) ≡ bi N (bi R|0, 1 − R2). (15)

To determine R̃1 we appeal to Newton’s method, which provides the following iterative
equation:

R̃1 ←
⌈
R̃1,n +

(
1 − R̃2

1,n

) 2 P̃T
1 H(b1, R̃1,n) − ẽ1

2 P̃T
1 Γ(b1, R̃1,n)

⌋
n|δ,Nmax

, (16)

where R̃1,0 ≡ cos(πẽ1) and x ← f (xn)�n|δ,Nmax
represent the iterative map xn+1 = f (xn)

that stops when either |xn+1 − xn| < δ or n > Nmax for suitable, prefixed 0 < δ ∈ R and
Nmax ∈ N. In such a case x ≡ xn.

Let us define now the vectors N(φ, b, R) and Υ(φ, b, R) with entries

Ni(φ, b, R) ≡ N (φ|bi R, 1 − R2) (17)

and

ϒi(φ, b, R) ≡ bi N (φ|bi R, 1 − R2) (18)

such that the estimate for the conditional average of the teacher’s post-synaptic field becomes

b̃
(i)
1 ≡ P̃T

1 Υ
(
φ

(i)
1 , b1, R̃1

)
P̃T

1 N
(
φ

(i)
1 , b1, R̃1

) (19)

and the learning rates

F
(i)
1 ≡

√
Q

(i)
1

R̃1

(
b̃

(i)
1 − R̃1φ

(i)
1

)
, (20)

5
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where Q
(i)
1 ≡ J(i)T

1 J(i)
1

/
N . With the M inputs generated to compute the estimate for the

generalization error
(
S(i)

2

)
and their correct labels

(
σ

(i)
B,2

)
we can compute the updates

J(i)
2 = J(i)

1 + F
(i)
1

σ
(i)
B,2√
N

S(i)
2 .

This procedure is then iterated. The algorithm can be expressed as a pseudo code in the
following way.

(i) ∀ i make J(i)
0 = 0 and F

(i)
0 = 1 . Set ẽ0 = 1

2 , R̃0 = 0 and p = 1.

(ii) ∀ i make J(i)
p = J(i)

p−1 + F
(i)
p−1 σ

(i)
B,p S(i)

p

/√
N .

(iii) ∀ i make φ(i)
p = σB,p+1 J(i)T

p S(i)
p+1

/
J (i)

p .

(iv) Make ẽp = 1
M

∑
i 	
(−φ(i)

p

)
.

(v) Make β̃p = ∑
i J(i)

p

/∣∣∑
i J(i)

p

∣∣.
(vi) Compute bmax,p, bp and P̃p(b) using (13a), (13b) and (13c).

(vii) Set R̃p,0 = cos(πẽp) (or R̃p−1).
(viii) Using equations (14) and (15), compute

R̃p ←
⌈

R̃p,n +
(
1 − R̃2

p,n

)2P̃T
pH(bp, R̃p,n) − ẽp

2P̃T
pΓ(bp, R̃p,n)

⌋
n|δ,Nmax

.

(ix) Using equations (17) and (18), compute

b̃(i)
p = P̃T

pΥ
(
φ(i)

p , bp, R̃p

)
P̃T

pN
(
φ

(i)
p , bp, R̃p

)
(x) Make F (i)

p = (√
Q

(i)
p

/
R̃p

) (
b̃(i)

p − R̃pφ(i)
p

)
.

(xi) IF p < P THEN set p = p + 1 and GO TO (ii), else STOP.

4. Results

The curves presented as follows have been computed following the algorithm presented in
section 3, considering an ensemble with M = 4 000 students and networks of size N = 51.
In all cases, the FFT algorithm was ran considering a grid of size 28.

4.1. Diluted teachers

The first case we analyse is for the diluted teacher perceptrons with dilutions m = 1, 5
(the m-diluted teacher has a synaptic vector with components Bj = 1 for all j � m

and 0 otherwise). These instances were analyzed also in [10], and in both cases the CK
algorithm did not converge to zero within the time considered. In figure 1(a), we present
the learning curves obtained by our algorithm (N) and the CK algorithm (red in the online
version). Defining the parameter α ≡ p/N , where p is the number of examples presented,
it is observed that our algorithm converges after α = 2, whilst the CK algorithm still
presents an error of 4% even for α > 5. In panel (b), we present the estimate P̃b(b)

which matches the analytical expression of the probability Pb(b) = 1
2δ(|b| − 1). A similar

result has been obtained for m = 5 (figure 2). The analytical expression of the probability
Pb(b) = 10

32δ(|b| − 1/
√

5) + 5
32δ(|b| − 3/

√
5) + 1

32δ(|b| − √
5) is very well approximated by

our estimate.

6
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40
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P
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(a) (b)

CK

N

Figure 1. (a) Learning curve for the 1-bit diluted teacher obtained by applying our algorithm
(N) and the Caticha–Kinouchi algorithm (CK, red in the online version). (b) Plot of the estimate
for the density distribution of the teacher’s post-synaptic field. The agreement with the analytical
solution, Pb(b) = 1

2 δ(|b| − 1) is excellent.

4.2. Teachers constructed from geometric series

Suppose that Bk ∝ r−k for any 2 � r ∈ R. Given that sgn
(∑N

k=1 Skr
−k
) = S1 these

synaptic vectors will lead to the same algorithm as the 1-bit diluted teacher. If we consider the
vector B ∝ (1, 1, 2−1, 2−1, 2−2, 2−2, . . .)T instead, the results obtained are different. Observe
that this vector is not diluted and, although the two first entries are fifty percent larger than
the second largest, all the entries play a role in the input classification. The limit of the
characteristic function is

lim
N→∞

�N(b̂) = sinc2

(√
3
2 b̂

)

which corresponds to the triangular density function Pb(b) = 1
6	(

√
6−|b|)(√6−|b|) (where

sinc(x) ≡ sin(x)/x). In figure 3(a), we present the correspondent learning curves considering
our algorithm (N) and the CK algorithm (red line in the online version). Even after a long
number of examples (α � 60) the generic algorithm does not perform as well as the specific
algorithm. In panel (b), we present the distributions of post-synaptic fields. Observe the
agreement between the estimates (full line) and the exact value (dashed line, red in the online
version).

7



J. Phys. A: Math. Theor. 43 (2010) 125101 J P Neirotti

0 2.5 5 7.5 10
α

0

0.1
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Figure 2. (a) Learning curve for the 5-bit diluted teacher obtained by applying our algorithm (N)
and the Caticha–Kinouchi algorithm (CK, red in the online version). (b) Plot of the estimate for the
density distribution of the teacher’s post-synaptic field. The peaks’ positions and relative heights
are in agreement with the analytical expression Pb(b) = 10

32 δ(|b| − 1/
√

5) + 5
32 δ(|b| − 3/

√
5) +

1
32 δ(|b| − √

5). The oscillations observed around the peaks are effects due to the finite size of the
grid.

4.3. Marginal case: The harmonic sequence

The vector constructed from the harmonic sequence has the components Bk ∝ 1/k. Pb cannot
be obtained analytically but, according to [11], we know that it is absolutely continuous.
For this particular case, the algorithm for the typical case and ours produce indistinguishable
results. To illustrate this point we define the variable X(α) ≡ (

eN
g (α)−eCK

g (α)
)/

σ , where eN
g is

the learning curve obtained by the application of our method, eCK
g is the learning curve obtained

by the application of the Caticha–Kinouchi method and σ � 1/
√

M is a parameter associated
with the level of noise inherent of the measurement process (a more thorough discussion about
this point is presented in the conclusions). In figure 4(a), we present the curve X(α) which
is, after a short initial period, bounded in the interval (−1, 1). The straightforward conclusion
extracted from this result is that the differences between learning curves are of the order of
the noise. The only advantage in the application of our method is that, as a byproduct, we
obtained a good estimate for the distribution of the teacher’s post-synaptic field (panel (b) in
full line). We also present in panel (b) the numerically computed distribution Pb, obtained
from FFT

[∏51
k=1 cos

(√
6

π
b̂/k

)]
28 (dashed line, red in the online version).

8
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True

CK
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(a) (b)

Figure 3. (a) Learning curve for the teacher B ∝ (1, 1, 2−1, 2−1, 2−2, 2−2, . . .)T obtained by
applying our algorithm (N) and the Caticha–Kinouchi algorithm (CK, red line in the online version).
(b) Plot of the estimated (full line) and true density distribution of the teacher’s post-synaptic field
Pb(b) = 1

6 	(
√

6 − |b|) (dashed line, red in the online version).

4.4. Typical case

We place under the title typical case the teachers whose synaptic vectors have been drawn from
a uniform distribution over the N-sphere, i.e. vectors B whose components are i.i.d. variables.
This implies that the components of the unit vector will be at most of O(1/

√
N). If that is the

case, the characteristic function of the distribution of post-synaptic fields can be expressed as

�N(b̂) � exp

(
−1

2
b̂2

N∑
k=1

β2
k

)
+ O(N−1)

which is, disregarding corrections of O(N−1),
√

2π times a normal distribution in b̂ with unit
variance and centred at 0. Trivially, Pb(b) = N (b|0, 1), which is Caticha and Kinouchi’s
result. We ran our algorithm on several teachers satisfying these conditions with results
indistinguishable (in the sense explained in the previous subsection) to the results obtained by
the application of the CK algorithm.

4.5. PV teachers

Our algorithm relies on the estimation of the teacher’s post-synaptic field distribution based
on a Fourier transform method. If the Fourier transform of the characteristic function

9
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X
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b
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0.4
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Estimated
Calculated
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Figure 4. (a) Plot of the variable X(α) ≡ (eN
g (α) − eCK

g (α))/σ , where eN
g is the learning curve

obtained by the application of our method, eCK
g is the learning curve obtained by the application

of the Caticha–Kinouchi method and σ � 1/
√

M . (b) Plot of the estimated density (full line) and

FFT[
∏51

k=1 cos(
√

6
π

b̂/k)]28 (dashed line, red in the online version).

∏N
k=1 cos(b̂βk) is singular for a particular vector β, then the method could produce meaningless

results.
Following [11] (and references therein) we found that a geometric sequence Bk ∝ r−k with

r equal to the reciprocal of a PV number produces a distribution of the field b that is singular.
A Pisot–Vijayaraghavan (PV) number is an algebraic integer whose Galois conjugates are all
less than one in absolute value.

We computed the learning curve for the teacher with entries taken from a geometric series
with basis equal to a particular PV number r = (1 +

√
5)/2, also known as the Golden Section.

The results are presented in figure 5. It is clear that the CK algorithm produces a better behaved
curve (CK, red in the online version) than our algorithm (N).

5. Conclusions

We developed and tested a new and improved algorithm for learning realizable rules in
perceptrons. The algorithm works in an online scenario, using optimally the information
available to the student. The updates of the student’s synaptic vector are based on an estimate
of the distribution of the teacher’s post-synaptic field, computed with the aid of an ensemble of
students learning in parallel. The algorithm performs better than the one developed for learning

10
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Figure 5. (a) Learning curves for the teacher Bk ∝ r−k with r = (1 +
√

5)/2, obtained by
applying our algorithm (N) and the Caticha–Kinouchi algorithm (CK, red line in the online version).
(b) Plot of the estimated density (full line) and the FFT of the characteristic function computed
using the teacher’s synaptic vector (dashed line, red in the online version). Observe that the true
value of the density is not a smooth curve of b and that there is no match between this curve and
the estimate.

optimally a typical rule when the student learns from a diluted teacher. In marginal (harmonic
sequence) and typical cases the algorithm matches the performance of the CK algorithm. The
algorithm produces less competitive results only when the estimate of the density distribution
of the field b is singular. It has been conjectured that this occurs only for geometric sequences
with a base equal to a PV number. Given that PV numbers are denumerable, it is expected
that the occurrence of one of these cases to be extremely rare.

Observe that both algorithms (CK’s and ours) produce an outcome, per example presented,
that is either a 0 or a 1, depending on whether the student has produced the correct classification
or not. Therefore, the learning curve over one realization of the learning process, i.e. over only
on set S of P examples, produces a discontinuous curve (a simple sequence of 0s and 1s). If
the process is repeated M times (like the usual serial version of the algorithms) the averaged
curve so obtained is still discontinuous, but with discontinuities of O(1/

√
M). That is why our

curves, for both algorithms, look noisy with fluctuations of order 1/
√

4000 � 0.015 around
an average. If M → ∞, the averaged curves finally obtained are continuous. There is no
extra cost on running the algorithms in parallel, but there is an important advantage for both
algorithms alike. By running in parallel we can generate an estimate for the overlap R as a
function of the number of examples the student has received so far.

11
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Our algorithm is more time consuming than CK’s only because of the estimation of the
distribution Pb and the quantities that depend upon it. The FFT algorithm has a complexity of
O(G2G), and the averages depending on the distribution are calculated with O(2G) operations.
In our experiments we kept a value of G = 8; this value granted estimates of good quality in
a reasonable time.

With respect to the chosen size of the system N = 51, we found that for this value the
curves were produced in a reasonable time and the behaviour of the distribution of synaptic
fields mimic closely the asymptotic behaviour expected at the thermodynamic limit. A more
comprehensive study on the dependencies over the system size are left for a future work.

Observe that this generalization of Caticha–Kinouchi’s algorithm occurs because we
present binary inputs to the network. If the input vectors were formed by real components,
drawn from a Normal distribution with zero mean and unit variance, the distribution of the
teacher’s post-synaptic field becomes Normal and Caticha–Kinouchi’s result is recovered.

In all the cases studied we consider the entries of the input vector to be i.i.d variables.
The case when there is some structure in the input vectors will be a subject of future work.
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Appendix. Proof of (1)

Consider the synaptic vector B ∈ R
N and the input vectors S ∈ {±1}N with i.i.d. entries,

distributed according to PS(S) = ∏N
j=1 P(Sj ), where P(Sj = 1) = P(Sj = −1) = 1

2 . We
dub a gauge transformation any linear transformation that leaves invariant the form of the
input vectors and the inner products averaged over PS(S), i.e. K is a gauge transformation if

(i) ∀ S ∈ {±1}N K(S) ∈ {±1}N .
(ii)

〈
BTS

〉
S = 〈

K(B)TK(S)
〉
K(S)

, where 〈·〉S = ∑
{S} ·PS(S).

Consider the following transformations Ti and Eij with the following actions:

• TiB = (B1, . . . ,−Bi, . . . , BN)T

• Eij (B1, . . . , Bi, . . . , Bj , . . . . . . , BN)T = (B1, . . . , Bj , . . . , Bi, . . . . . . , BN)T.

It is very simple to prove that these transformations, and their products, satisfy (i) and (ii) above
and, therefore, they are gauge transformations. We can then transform any vector B ∈ R

N

into B′ = ∏
j∈N Tj

∏
(j,k)∈O Ejk(B), where N = {1 � j � N |Bj < 0} is the set of indexes

corresponding to negative entries of B, O = {(i, j) , 1 � i < j � N | |Bi | < |Bj |} is the set
of all index pairs linking entries that are not yet decreasingly ordered. In this form the vector
B′ so created has entries that satisfy B ′

k � B ′
l � 0 for all pair of indexes N � l > k � 1.

The joint distribution of the post synaptic fields can be written as

P(b, h) =
∑
{S}

P(b, h, S) =
〈
δ

(
b − BTS

B

)
δ

(
h − JTS

J

)〉
S

=
∫ ∞

−∞

db̂

2π
e−ibb̂

∫ ∞

−∞

dĥ

2π
e−ihĥ

〈
exp

(
ib̂

BTS
B

+ iĥ
JTS
J

)〉
S
. (A.1)

Let us decompose the synaptic vector of the student

J = JBβ + J⊥β⊥ = JB (β + εβ⊥) , (A.2)

12
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where ε ≡ J⊥/JB, β ≡ B/B and β⊥ is a random unit vector lying on the hyper-plane
perpendicular to B. If the student learns, we can expect that ε � 1. Using (A.2) we have that

R = JTB
JB

= JB√
J 2

B + J 2
⊥

� 1 − 1

2
ε2 + O(ε4).

It is easy to demonstrate that the frequently used quantity 1 − R2, related to the projection
of the student’s synaptic vector into the hyper-plane perpendicular to the teacher’s synaptic
vector is

1 − R2 � ε2 + O(ε3)

or equivalently

ε �
√

1 − R2 + O
[
(1 − R2)

3
2
]
.

Each component of the unit vector η ≡ J/J can be approximated by

ηk ≡ JBβk + J⊥νk√
J 2

B + J 2
⊥

� Rβk + ενk + O(ε3), (A.3)

where νk ≡ [β⊥]k
The expectation in (A.1) is〈

exp

(
ib̂

BTS
B

+ iĥ
JTS
J

)〉
S

=
N∏

k=1

1

2

∑
s=±1

exp(ib̂βks + iĥηks)

=
N∏

k=1

cos(b̂βk + ĥηk)

and by using (A.3) we have that

b̂βk + ĥηk � (b̂ + ĥR)βk + ĥενk + O(ε3).

Up to O(ε3) we have

cos(b̂βk + ĥηk) � cos((b̂ + ĥR)βk + ĥενk) + O(ε3)

� cos((b̂ + ĥR)βk) exp

(
− ĥ2

2
ε2ν2

k

)
[1 − ĥε tan((b̂ + ĥR)βk)νk] + O(ε3),

where we used that ε exp
(
ĥ2ε2ν2

k

/
2
) � ε + O(ε3). Thus, by applying the change of variables

b̂ + ĥR → b̂ and disregarding terms of order ε3, we obtain

P(b, h)�
∫ ∞

−∞

dĥ db̂

4π2
exp

(
−1 − R2

2
ĥ2 − iĥ(h − bR) − ib̂b

) N∏
k=1

[1 − εĥ tan(b̂βk)νk] cos(b̂βk).

Observe that
N∏

k=1

[1 − εĥ tan(b̂βk)νk] � 1 − εĥ

N∑
k=1

tan(b̂βk)νk + ε2ĥ2
∑
j<k

tan(b̂βj )νj tan(b̂βk)νk + O(ε3)

� 1 − εĥ

N∑
k=1

tan(b̂βk)νk +
ε2ĥ2

2

⎡
⎣( N∑

k=1

tan(b̂βk)νk

)2

−
N∑

k=1

tan(b̂βk)
2ν2

k

⎤
⎦ + O(ε3).
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Without lose of generality, we can suppose that the entries of the vector β⊥ satisfy the
equation νk = κk/(σN

√
N), where κk are random deviates distributed in [−1, 1] according to

Pκ(κ) ∝ δ(κTβ)
∏N

k=1 	
(
1 − κ2

k

)
and 0 < σ 2

N ≡ 1
N

∑N
j=1 κ2

j � 1. To bound the parameter
σ 2

N , observe that the expected value of κ2
k and κ4

k are

〈
κ2

k

〉 = 1

N

∫ ∞

−∞
dx

N∏
j=1

sinc(xβj )

(
1 + 2

cot(xβk)

xβk

− 2

x2β2
k

)

〈
κ4

k

〉 = 1

N

∫ ∞

−∞
dx

N∏
j=1

sinc(xβj )

(
1 + 4

cot(xβk)

xβk

− 12

x2β2
k

− 24
cot(xβk)

x3β3
k

+
24

x4β4
k

)
,

where N ≡ ∫∞
−∞ dx

∏N
j=1 sinc(xβj ) is the normalisation constant. Therefore, the following

additions can be approached by

1

N

N∑
k=1

〈
κ2

k

〉 � 1

N

∫ ∞

−∞
dx

N∏
j=1

sinc(xβj )
1

N

N∑
k=1

(
1

3
− 2

45
x2β2

k + O
(
β4

k

))

� 1

3
+ O(N−1)

1

N

N∑
k=1

〈
κ4

k

〉 � 1

N

∫ ∞

−∞
dx

N∏
j=1

sinc(xβj )
1

N

N∑
k=1

(
1

5
− 4

105
x2β2

k + O
(
β4

k

))

� 1

5
+ O(N−1),

and thus σ 2
N � 1

3 ±
√

4
45 + O(N−1). We can conclude that the parameter σ 2

N is strictly positive

and expected to be close to 1
3 independently from β. Thus,

N∏
k=1

(1 − εĥ tan(b̂βk)νk) � 1 − εĥ

σN

√
N

N∑
k=1

tan(b̂βk)κk

+
ε2ĥ2

2σ 2
NN

⎡
⎣( N∑

k=1

tan(b̂βk)κk

)2

−
N∑

k=1

tan(b̂βk)
2κ2

k

⎤
⎦ + O(ε3).

From the Taylor expansion of the tangent we have

N∑
j=1

tan(b̂βj )κj =
∞∑

�=0

C�b̂
2�+1

N∑
j=1

β2�+1
j κj ,

where C� > 0 and observe that for � = 0, the first term, 0 = ∑N
j=1 βjκj < 1 just because β

and κ = √
NσNβ⊥ are perpendicular, and the other terms, � � 1, can be bound by∣∣∣∣∣∣

N∑
j=1

β2�+1
j κj

∣∣∣∣∣∣ <

N∑
j=1

β2�+1
j |κj | <

N∑
j=1

β2
j = 1,

due to the facts that 1 � βk � βk+1 � 0 and |κj | < 1; thus,∣∣∣∣∣∣
N∑

j=1

tan(b̂βj )κj

∣∣∣∣∣∣ <

∞∑
�=0

C�|b̂2�+1| = tan(|b̂|).
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In a similar fashion
N∑

j=1

tan(b̂βj )
2κ2

j =
∞∑

�=1

D�b̂
2�

N∑
j=1

β2�
j κ2

j <

∞∑
�=1

D�b̂
2�

N∑
j=1

β2
j = tan(b̂)2,

where D� > 0 for all � = 1, 2, . . . . Putting all things together and disregarding terms of order
ε3, we havethus, for a sufficiently large N,∣∣∣∣∣1 −

N∏
k=1

[1 − εĥ tan(b̂βk)νk]

∣∣∣∣∣ < 3|ĥ tan(b̂)| ε√
N

We finally have, disregarding corrections of O(ε3, ε/
√

N), the estimate to the joint
probability is

P(b, h) � N (h|bR, 1 − R2)Pb(b), (A.4)

where N (x|μ, σ 2) is a Gaussian distribution in x, centred at μ with variance σ 2 and Pb(b) is
the Fourier transform of limN→∞

∏N
k=1 cos(b̂βk). In other words, limN→∞

∏N
k=1 cos(b̂βk) is

the characteristic function of Pb(b).
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